• <tr id='Ec1vqB'><strong id='Ec1vqB'></strong><small id='Ec1vqB'></small><button id='Ec1vqB'></button><li id='Ec1vqB'><noscript id='Ec1vqB'><big id='Ec1vqB'></big><dt id='Ec1vqB'></dt></noscript></li></tr><ol id='Ec1vqB'><option id='Ec1vqB'><table id='Ec1vqB'><blockquote id='Ec1vqB'><tbody id='Ec1vqB'></tbody></blockquote></table></option></ol><u id='Ec1vqB'></u><kbd id='Ec1vqB'><kbd id='Ec1vqB'></kbd></kbd>

    <code id='Ec1vqB'><strong id='Ec1vqB'></strong></code>

    <fieldset id='Ec1vqB'></fieldset>
          <span id='Ec1vqB'></span>

              <ins id='Ec1vqB'></ins>
              <acronym id='Ec1vqB'><em id='Ec1vqB'></em><td id='Ec1vqB'><div id='Ec1vqB'></div></td></acronym><address id='Ec1vqB'><big id='Ec1vqB'><big id='Ec1vqB'></big><legend id='Ec1vqB'></legend></big></address>

              <i id='Ec1vqB'><div id='Ec1vqB'><ins id='Ec1vqB'></ins></div></i>
              <i id='Ec1vqB'></i>
            1. <dl id='Ec1vqB'></dl>
              1. <blockquote id='Ec1vqB'><q id='Ec1vqB'><noscript id='Ec1vqB'></noscript><dt id='Ec1vqB'></dt></q></blockquote><noframes id='Ec1vqB'><i id='Ec1vqB'></i>

                Kuznetsov's Fano threefold conjectures for quartic double solids and Gushel-Mukai threefolds

                发布者:文明办作者:发布时间:2020-12-21浏览次数:124


                主讲人:张诗卓,University of Edinburgh


                时间:2020年12月31日10:00


                地点:3号楼332室


                举办单位:数理学院


                内容介绍:It is conjectured that the non-trivial components, known as Kuznetsov components  of derived category of coherent sheaves on every quartic double solid is  equivalent to that of Gushel-Mukai threefolds. I will introduce special  Gushel-Mukai threefold X and its Fano scheme of twisted cubics on it and prove  it is a smooth irreducible projective threefold when X is general and describe  its singularity when X is not general. We will show that it is an irreducible  component of Bridgeland moduli space of stable objects of a (-2)-class in the  Kuznetsov components of the special GM threefolds. I will show that an  irreducible component of Bridgeland moduli space of stable objects of a  (-1)-class in the Kuznetsov component of an ordinary GM threefold is the minimal  model of Fano surface of conics. As a result, we show the Kuznetsov's Fano  threefold conjecture is not true.